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In a recent paper, Maasjost and Els~isser (ME) concluded, from the results of 
numerical experiments and heuristic arguments, that the Bourret and the direct- 
interaction approximation (DIA) are "of no use in connection with the 
stochastic acceleration problem" because (1) their predictions were equivalent to 
that of the simpler Fokker-Planck (FP) theory, and (2) either all or none of the 
closures were in good agreement with the data. Here some analytically tractable 
cases are studied and used to test the accuracy of these closures. The cause of 
the discrepancy (2) is found to be the highly non-Gaussian nature of the force 
used by ME, a point not stressed by them. For the case where the force is a 
position-independent Ornstein-Uhlenbeck (i.e., Gaussian) process, an effective 
Kubo number K can be defined. For K<~ 1 an FP description is adequate, and 
conclusion (1) of ME follows; however, for K >  1 the DIA behaves much better 
qualitatively than the other two closures. For the non-Gaussian stochastic force 
used by ME, all common approximations fail, in agreement with (2). 

KEY WORDS:  Stochastic acceleration, closure approximations, Fokker- 
Planck theory, Bourret approximation, direct-interaction approximation. 

1. INTRODUCTION 

The problem of acceleration of charged particles in a prescribed stochastic 
electromagnetic field has received attention both for its importance as a 
basic phenomenon in laboratory plasma physics and plasma 

1 Work supported partly by U.S.D.o.E. Contract No. DE-ACO2-76-CHO-3073 and partly by 
the National Science Foundation under Grant No. NSF PHY82-17853, supplemented by 
funds from the National Aeronautics and Space Administration. 
2 Princeton University, Plasma Physics Laboratory, P.O. Box 451, Princeton, N.J. 08544. 

3 Institute for Theoretical Physics, University of California, Santa Barbara, Calif. 93106. 
Permanent address: Princeton University, Plasma Physics Laboratory, P.O. Box 451, 
Princeton, N.J. 08544. 

879 

0022-4715/86/0900-0879505.00/0 �9 1986 Plenum Publishing Corporation 



880 Dirnits and Krommes 

astrophysics ~ and as a model system on which to test various statistical 
closure schemes. 0'4) In the present paper, we discuss some results on the 
latter topic. 

The problem can be cast into the following mathematical form. Find 
the evolution of the ensemble-averaged Green's function G(x, v, t; x', v', t') 
which satisfies 

t t . t t G(x,v, t ; x ,  v,  t ) =  <(~(x, v, t , x ,  v,  t ' ) )  (1) 

where G satisfies the Liouville equation 

~-~+v. V +b(x ,  v, t). (~(x, v, t; x', v', t') = 0 (t>~t') (2a) 

subject to the initial condition 

t .  ! t G(x, v, t , x ,  v,  t ' ) = b ( x - x ' ) 6 ( v - v ' )  (2b) 

In eq. (1), " ( . . .  )"  denotes an ensemble average over realizations of b. Here 
b(x, v, t) is a prescribed random acceleration field specified by the set of its 
many-argument moments (b(x, v, t ) ) ,  (b(x, v, t) b(x', v', t ' ) ) ,  and so on. 
Now consider the ensemble-averaged distribution function 
f (x ,  v, t) - ( f ( x ,  v, t ) ) ,  where )7 satisfies (2a) together with any initial 
condition of the form 

)7(x, v, to)= fo(x, v) (3) 

and where fo(X, v) is statistically independent of b(x, v, t). Given G, f can 
then be found from 

f (x ,  v, t) = f dx' dr' G(x, v, t; x', v', to) fo(x', v') (4) 

In the following we assume that b is stationary, homogeneous, and 
independent of v. If we are interested only in the evolution of the velocity 
distribution 

h(v, t) - f dx f (x ,  v, t) (5) 

then upon integrating eqs. (4) and (1) with respect to x we obtain 

h(v, t ) = f  dv' P(v, t -  to; v') ho(v') (6) 
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where 

and 

ho(v) - f dx fo(x, v) (7a) 

P(v, t -  to; v' ) - f d ( x - x ' ) G ( x - x ' ,  v, t - to;V'  ) (7b) 

We have used the homogeneity and stationarity assumptions to simplify 
the argument dependences on x and t. 

Despite the fact that the acceleration field b is externally specified, it is 
not, in general, possible to find a closed set of equations for any finite set of 
ensemble averages of products of powers of b and nonzero powers of G. 
Some approximation scheme is usually necessary in order to obtain such 
closed, deterministic equations. Thompson and Hubbard, (5) Sturrock, (1~ 
and Hall and Sturrock ~2) used the Fokker-Planck theory to obtain a 
velocity space diffusion equation for h in which the diffusion coefficient is 
expressed in terms of the covariance of the fluctuating force. (In a related 
calculation, Hubbard ~6) also calculated the field fluctuations for a near- 
equilibrium plasma and included polarization effects in the drag coefficient, 
thereby obtaining the Balescu-Lenard equation. Such calculations include 
the important effects of self-consistency, which is, however, beyond the 
scope of this article.) This theory has been formulated more generally in 
terms of cumulant expansions by Kubo (7) and others for linear differential 
equations with stochastic (operator) coefficients. (Bourret,(8~ van 
Kampen, ~ and Keller ~~ have explicitly worked out the same scheme to 
higher orders.) Truncated cumulant expansions such as the Fokker-Planck 
theory are valid if and only if (a) the rms value of an appropriate norm of 
the stochastic coefficient multiplied by its autocorrelation time (the Kubo 
number) is much less than 1 (Ref. 11; the "narrowing condition"), and (b) 
the coefficient operator is near-Gaussian in the sense that the time integral 
over all but one of the time variables of its nth cumulant for each n ~> 3 is 
negligible compared to the corresponding integral for n = 2. Bourret gave 
an integral equation for h valid under the same conditions. More generally, 
Orszag and Kraichnan ~3~ treated the problem in the direct-interaction 
approximation (DIA). Allegedly, that theory should have some relevance 
for Kubo numbers larger than 1. From the assumptions made in the 
derivation of the DIA and the fact that it reduces to the Fokker-Planck 
theory in the small Kubo number limit, it is clear that the DIA only applies 
when a Gaussian condition, which reduces to that for the Fokker-Planck 
theory in the small Kubo number limit, holds. We return to this point 
later. 
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The present work was motivated by a recent paper of Maasjost and 
Elsfisser (ME), (12) in which they presented a test of the Fokker-Planck, the 
Bourret, and the direct-interaction approximation as applied to the 
stochastic acceleration problem. Their method consisted of (1) calculating 
the phase space Green's function from the results of a numerical 
simulation, (2)inserting the result into the expressions forming the left- 
and right-hand sides of the equations resulting from the closures in 
question (integrated over a small velocity interval), and (3) observing 
whether or not the left- and right-hand sides agreed. They found that, 
"depending on the parameter regime, either all or none of the three theories 
are good models for the stochastic acceleration problem," and concluded 
that, in particular, the DIA is "of no use in connection with the stochastic 
acceleration problem." This conclusion is striking, since it has been argued 
that the DIA should remain reasonable, if not quantitatively precise, as the 
nonlinearity becomes large, whereas the Fokker-Planck and Bourret 
approximations become ill-behaved in that limit. (13'14) Furthermore, the 
disagreement that they found persists for times much longer than the effec- 
tive autocorrelation time. 

These surprising results have motivated us to further discuss the same 
problem, using, however, mainly analytical solutions that can be obtained 
in tractable cases. We show that the conclusions of Maasjost and Els/isser 
are intimately bound to the fact that the force field that they used in their 
numerical simulations is highly non-Gaussian, and are not, in general, 
correct for Gaussian fields. For example, for a stationary Gaussian force 
field, not without practical interest, we find a parameter regime in which 
the DIA behaves much better qualitatively than the other two closures. 

The procedure of ME, which we follow in this paper, is clearly not a 
sufficient test of a statistical closure. In fact, its necessity can also be 
questioned, since it does not solve the closure self-consistently. We discuss 
this issue further in Section 6. In this paper we take the point of view that 
the work of ME certainly provides some information about the closures in 
question, and that our work represents an attempt to clarify their con- 
clusions. 

The remainder of the paper is organized as follows. In the main body 
of the paper we consider the special case where the acceleration is position- 
independent. In Section 2, we give the formal solution to the stochastic 
acceleration problem in that special case, and relate that solution to the 
stochastic oscillator. We briefly discuss in Section 3 the basic properties of 
the stochastic acceleration fields and give an explicit evaluation of the 
Green's function for each of the three closures mentioned previously. There, 
we also define an effective Kubo number for the stochastic acceleration 
problem. A summary of the equations resulting from the three closures is 
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given in Section 4 along with a comment on a heuristic argument given by 
ME. In Section 5, we display and discuss the results of inserting our 
analytically obtained Green's functions into the closure equations of Sec- 
tion 4. We present our conclusions in Section 6. Appendix A contains some 
extensions of the results of Sections 2, 3, and 5 for cases where the 
stochastic acceleration is Gaussian, varies spatially as well as temporally, 
and has a finite correlation length Ic. Some properties of random fields of 
the type used by ME are given in Appendix B. 

2. F O R M A L  S O L U T I O N  A N D  T H E  E X A C T L Y  S O L V A B L E  CASE 

For simplicity, we specialize in this paper to the one-dimensional case. 
For higher spatial dimensionality, the formal manipulations generalize 
trivially. Again, we consider only statistically stationary and homogeneous 
fields b(x ,  t). 

2.1. So lu t ion  

Upon solving eq. (2) for 6; by integrating along the characteristics 

dx(t) 
= v( t )  (8a) 

dt 

dr(t) 
- -  = b [ x ( t ) ,  t]  (8b) 

dt 

performing the ensemble average in (1), and using the translational 
invariance of G with respect to x and x' to change the integration variable 
in (7) to x' ,  we find 

P(v,  z; v')= (6[Vo(X,  v, t + r ;  t l b ) - v ' ] )  (9) 

where vo(x,  v, t+z ;  t [b )  is the velocity at time t of a particle that has 
position x and velocity v at time t + z for a given realization b of the 
acceleration field. 

In the remainder of the main body of this paper, we further specialize 
to the case when b is independent of x. Extensions to x-dependent 
acceleration fields are addressed in the appendices. (In particular, it is 
shown there that a simple modification of this theory suffices for the 
parameter values used by ME.) The integration of eq. (Sb) then reduces to 

v o = b  - dt '  b ( t ' )  (10) 
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Then, upon inserting (10) into (9), using the Fourier representation of the 
6 function and exchanging the order of integration and ensemble averaging, 
we obtain the solution 

f~ dkexp[ik(v-v')] ( exp( - ik  fodt'b(t')) I (11) P(v, ~; v') = _,~ 

The velocity space Green's function for a particle acted on by a 
position-independent acceleration field is formally the same as the con- 
figuration space Green's function for a point in a fluid with a position- 
independent random velocity field, a problem which has been treated by 
Kubo. (11) Equation (11) can be obtained from Kubo's eq. (5.8) by Fourier 
transforming the 6 function. 

2.2. Re la t ionship  to the  S tochast ic  Osci l la tor  

Here we consider stationary accelerations b(t), not necessarily 
Gaussian, for which 

<b(t)> = 0  (lZa) 

<b(tl) b(t2) > = b 2 exp( - I t  1 - t21/z~) (lZb) 

A normalized acceleration/7 can be defined by 

~(~) - b(~c,7)/bo (13) 

and a stochastic oscillator Green's function RK(t/) can be defined by 

where 

[(a/a~)+iI<6(n)] ~(~)=6(~) [~K(,7) = o for ,7<o]  (15) 

K is precisely the Kubo number for the system (15), and Kubo's "narrow- 
ing condition ''(7) is K <  1. The solution to (15) is, formally 

RK(n)-- (exp L - i K  f: dr~'/;(~/')] ) (16) 

Upon changing the integration variable in (11) to K - kbozc, we obtain 

~ dK F / v - v ' \ l  
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Thus, the solution to the stochastic acceleration problem when the 
acceleration satisfies (12) is a Fourier transform with respect to the Kubo 
number of the solution of the stochastic oscillator. 

3. G A U S S I A N  A N D  M A A S J O S T - E L S A S S E R  FIELDS, A N D  
THE SOLUTIONS OF THE S T O C H A S T I C  OSCILLATOR A N D  
ACCELERATION PROBLEMS 

3.1. Gaussian Accelerat ion Field 

There are several ways in which a Gaussian field (or any other 
stochastic field) can be characterized. (9) Let Pn(b,,xl, tl; b2, x2, t2;...; 
bn, x , ,  t ,) HT= 1 db~ be the probability that the n vector (b,, b2 ..... b,) lies in 
the volume element H~=~ (bi, bi+dbi). If all of the multivariate dis- 
tributions P ,  are jointly Gaussian for all n >~ 1, then b is a Gaussian ran- 
dom field. Alternatively, b(x, t) is a centered Gaussian if its characteristic 
functional has the form 

= exp - J dxl dx2 dtl dr2 k(Xl, q)<b(xl, tl) b(x2, t2)) k(x2, t2) 
- - o o  

(18) 

If b is independent of x, then by comparing (16) with the definition (18) of 
G[k] we see that Rx(~) is a special case of G[k] evaluated for 

k(x' , t ')= ~ Z(o, t ) ( t ' )6{x ' -Ex-v( t - t ' )]}  (19) 

where 

zA(y) -- 1 ( y e A )  
(20) 

- 0 (yq~A) 

Upon inserting (19) into (18), we obtain for b an Ornstein-Uhlenbeck 
process 

RK(v) = exp[ -- K2~(v)] (21) 

where 

0 

(22) 
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We then obtain from (17) 

P(v,  z; v') = {2bozc[~Z~(Z/Zc)] -t/2 

3.2. Maasjost  and EIs~isser Field 

Dimits and Krommes 

1 ( v -  v')2'~ 
exp - 4e(U%) C7~7 (23) 

boz~ J 

The acceleration field used by Maasjost and Elsiisser (12) is given in the 
continuum limit by 

b(x, t) = bx(x) bt( t) (24) 

where bx and b t are mutually independent, stationary Gaussian processes 
satisfying 

(bx(x)) = 0 (25a) 

(b,(t))  = 0 (25b) 

(bx(Xl) bx(x2)) = ~2 x e x p ( - I x  I - x21/lc) (25c) 

( b,( tl) b,( t2) ) = a 2, e x p ( -  It1 - tzl/rc) (25d) 

axat2 a - b~ (25e) 

The field b is clearly non-Gaussian since, for example, its one-point dis- 
tribution function is given by 

Pl(b) = (Tzbo) 1 Ko(lbl/bo) (26) 

The characteristic functional for b can be expressed formally as (see Appen- 
dix B) 

G[k ] =exp ( -  �89 tr ln I(~(xa - x2) + b2 f dx3 dt3 dta k(x3, t3) k(x2, t4) 

xexp(-lXl-X31/Ic-It3--t4[/ 'Cc)]) (27) 

where the quantity in the square brackets on the right-hand side is the ker- 
nel of the integral operator on which the operations outside are performed. 
Upon inserting (19) into (27) with lc = 0% we find 

RK(z) = [1 + 2K2c~(r)] -1/2 (28) 

where c~(z) is given in (22). Then from (17) we obtain 

P(v, z; v') = {Tzborc[-2c~(v/rc)] -1/2} Ko \bozc[2~(Z/Zc)]l/2] (29) 
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3.3. Ef fect ive Kubo Number  

As stated in Section 2.1, the random velocity field problem studied by 
Kubo ~H) is equivalent to the l ~ = ~  stochastic acceleration problem. 
According to Kubo, the narrowing condition for the stochastic acceleration 
problem is 

K. - boz~/LJv ~ 1 (30) 

where 

~v ~" II0/~vll-1 (31) 

and where "llo/ov[r' stands for some characteristic value of O/c3v applied to 
the resulting distribution function. If the velocity distribution is near- 
Gaussian, then Av is a measure of the spread of the distribution. In general, 
Av must be interpreted instead as in (31). For the Green's functions that we 
are studying, we can rewrite (30) in a form that generalizes easily to non- 
Gaussian velocity distributions, viz. 

R(r) - olim \ $8 dK RK(z ) ) (7>0) (32) 

For 7 an even integer [K(r)]~, if finite, is the magnitude of O~/c3v ~ acting on 
P at v = v ' .  Upon inserting (21) into (32), we obtain for the Gaussian 
process, to within a dimensionless constant factor, 

~(~)~ [~(~)]-i/2~~-1/2 (3>> 1) (33) 

For the ME field, the interpretation of Av as a spread is inappropriate and 
(32) yields 

/ ~ = ~  (Vz) (34) 

The definition of K ~ here is a heuristic generalization of that for the 
stochastic oscillator. It will be used in the present work in the discussion of 
the plots displayed in Section 5, but not as an expansion parameter in any 
closure scheme. 

4. STAT IST ICAL  CLOSURES IN THE C O N T E X T  OF THE 
S T O C H A S T I C  A C C E L E R A T I O N  P R O B L E M  

For a summary of the equations resulting from the Fokker-Planck, 
the Bourret, and the direct-interaction approximations, and for the descrip- 
tion of the test method used by ME, we refer the reader to Ref. 12. For 
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convenience, we merely write here those equations in the forms used by 
ME. These expressions, which represent the probability flux of particles 
leaving the interval (vz, v~), are, respectively 

v)  -~ C ~ F ~  1 + ~  _~vp(v,r;v,) I . . . .  (35a) & 41 dv t'(v, ~; v') = b~ ~ . . . .  , 

L fvr dv e(v,  z; v') = Jo c>c Jr, 

;2 - -  dv P(v ,  "r; v ' ) =  Oz 

• ~-~P(v",z-r";v')l;-;; 

dz' (bb)(vz',r')~-~P(v,~-~';v')l,,v=~t . . . .  (35b) 

S &" dr" dx" G(x', v, z"; v")(bb)(x ' ,  r") 
o ~  - - o 0  

(35c) 

We also note two points. First, it is clear that in the ME test the right- 
hand sides of the three closure schemes will agree with each other to within 
a relative error of order Z ac/Ze~, where Z ac is the effective autocorrelation 
time for v ~ (v' - zlv, v' + Av) and Ze~ is the characteristic time scale of the 
evolution of P. Over most of the time interval in each of the results dis- 
played by ME, Zac/rev is a small quantity: Thus ME appear to have made 
no effort to study parameter regimes in which the three closures would not 
be expected to agree with each other and where, therefore, the advantages 
of one over the other two might be displayed. 

Second, ME, in their analytical discussion of closure schemes (in their 
Sect. 2) attempt to motivate a statement that the exact Green's function (~ 
can be approximated by the ensemble-averaged Green's function G only if 
the latter is approximately equal to the unperturbed Green's function G o . 
They do this by using the assumption (which they do not justify) that 

6G - G - G =  -G(6L)G (36) 

where 

6L - [b(x, t ) -  (b(x, t)>](O/Ov) (37) 

However, this is inconsistent with the Fokker-Planck approximation even 
where the latter is expected to be valid. In the Fokker-Planck 
approximation, 

6G = - G o ( 6 L ) G  (38) 
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is used. In general, there is no reason to expect that (36) will agree with 
(38) once 

I I a -  G o f l  'r Ilaoll ( 3 9 )  

no longer holds. Thus, they have assumed their conclusion. 

5. RESULTS A N D  D I S C U S S I O N  

In this section, we study the three closure schemes discussed in the 
previous sections, using the results for P(v, z; v') obtained analytically in 
Section 3. We separate the discussion into the cases of Gaussian statistics 
and ME statistics, and give, finally, a brief separate discussion of the short 
time results for both cases. In all of the figures, the velocity interval is given 
by v' = 2.0, Av = 10 -2. 

5.1. Gaussian Stat ist ics 

The result for the velocity space Green's function for Gaussian b is 
given by eq. (23). Then it follows that 

8 ~ ' + ; ;  1 &('C/Zc)( Av ~ 1 
8z _ dv P(v, z; v') - T(,1/2,.Cc ~(,.C/72e) \borc] (4c~) 1/z 

x exp - 4 ~  \bo~c] J (40) 

The right-hand side integrated with respect to v over the interval (vl, vr) - 
(v' - Av, v' + Av) can easily be obtained in an analytic form for the diffusion 
approximation (35a), and as expressions in which the v" integration has 
been carried out but the z" integration still remains to be done 
(numerically) for the Bourret (35b) and direct-interaction (35c) 
approximations. The results are, respectively 

_ _  • - i  _ _  _ (41a) ~1/2% ~ b o r c ) ~ e x p  -~ \bozc/  A 

. o ,  dy ~(y) -  3/2 
291/217c ~ ~0 

[ z ( 3 v ' ~  2 1 ] 
xexp L y -  ~ -  \b--~J ~ 3  (41b) 

822/44/5-6- ~ 2 
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1 ~ I y  2 + ( r  2 ~ y + e x p  ( 1-3/2  DIAo : 2~ 1/2~c--~--~ (b-~)[~xp(_ ,/~,)dyy 3/2 \% / -T/%)J 

x exp - 4 \bo%J y2 + ('c/%) y + e x p ( -  T/%) 

In Figs. 1, 2, and 3 we have plotted the expressions (40)-(41c) as 
functions of ~ for three sets of parameter values. The values used in Fig. 1 
correspond to R(~) ~ 1 over all times except a brief initial period during 
which the evolution of (40)-(41c) has hardly begun [-i.e., all particles are 
still in the velocity (vt, vr)]. The agreement between the right-hand sides 
(41a-c) and the left-hand side (40) is very good. In Fig. 2, K =  (0.1) 1/2 at 
t = 1.0, beyond which the agreement is again good. In the short time regime 
where R >  1, the DIA agrees better than the other two closures. In Fig. 3, 
this trend is more markedly emphasized. 

The increased departure between the left- and right-hand sides as bo is 
increased can be characterized by K 0 -  R(%v), the Kubo number (33) 
evaluated with ~ equal to the characteristic time for the evolution of (40), 
say. A sensible definition of Ko must satisfy the criterion that the agreement 

0.12[ 

0.10~ r~ 
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-o---o.F p 6 
- - - ~ - B  6 

I [ I 1 
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t 

Fig. 1. Equations (40) and (41) for b0 = 0.01, Tc = 0.1; this corresponds to K0 "~ 1 for most of 
the evolution. 
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Fig. 2. 
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between the right- and left-hand sides of the closure equations be good 
if and only if K'o~ 1. Now, suppose the diffusion approximation is 
valid. Then ~(~ /%)~/% and the effective evolution time for (40) is 
approximately given by 

ze~ - - -  (42) 
bo 

so that 

-~0 = [g'gO{(gev/gc)] --1/2 ~ R1 ,.. box JAy '~ 1 (43) 

Conversely, if g~l ~ 1, then the exponential in (40) dominates the evolution 
until c~ ~ R/-2 > 1, so that during most of the evolution of (40) the diffusion 
approximation is valid. Thus R 1 ~ 1 is necessary and sufficient for the 
validity of the diffusion approximation over most of the time that the 
evolution of (40) occurs, so that K1 is also a sensible definition of the Kubo 
number. This argument is supported by the results displayed in Figs. 1-3, 
for which we have g'l respectively equal to 0.1, 1.0, and 10.0. 

The slower decay of the value of the Bourret expression can be 
understood intuitively by noting that at any given time z, contributions 
from all earlier times y, at which ~ 3/2(y) is much larger, are only weakly 
damped by the e x p [ - ( Z / T c - y ) ]  factor in the integrand. In the Fokker- 
Planck expression, those contributions are absent; in the case of the DIA 
they are damped by the G(x", v, ~; v") factor in (35c) [which is obscured in 
the final form (41c) used for the numerical evaluation]. 

Summarizing, for b an Ornstein-Uhlenbeck process, all three closures 
are seen to work for small effective Kubo number, while for large effective 
Kubo number, none of the three closures work well quantitatively, 
although the right-hand side for only the DIA retains the qualitative 
features of the left-hand side. 

5.2. Maasjost -EIs&sser  Stat is t ics  

The velocity space Green's function for the ME acceleration field is 
given by (29). The left-hand side of the closure equations integrated with 
respect to v over the interval (v'-Av, v'+ Av) can be evaluated to be 

cq-c i 
(44) 
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The corresponding right-hand sides, which are displayed in Figs. 4-6, are 

F P M E - 1  K l l  dv 1 ~r~ bo%-~) 1/~ (45a) 

B M E  - -  1 ~/~ dy exp - - -  y K 1 [2cffy)]  
/Fee "0 

(45b) 

] Cz/'Cc T 
D I A M E = ~ J o  dyexp [ - ( ~ - y ) ]  

X (~Xl~2)-l/2cxp[--~\b--~c/L(2~)l/2 (2~7),/2)] 

f' x dx(1 + gx)(1 --X2)--l/2[(2"}-eX)2--82] 
--1 

1 x 1 1 
• e x p [ - 2 ( b ~ ) ( ( 2 ~ 2 ) 1 / 2  (2~)i/2)] (45c) 

0.08 I J 

-rc b o =0.01 
r c =0.1 

0.061-" \  . . . .  LHSME -1 
I \ "~ FPME | 
I \ ----- BME / \ "e---t DIA ME 

\ 

=, 0.04 
u_ 

\ 
\ 

\ 
0.02 "- 

0 I I I 
0 5 I0 15 20 

t 

Fig. 4. Equations (44) and (45) for bo=0.01, rc=0.1. 
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i f  I I I I 

b o =0.1 
,r c =0. I 

F ~"k',~ LHS, E 
( [  ; X'~"t L "o---o'FPME x 3J-/ f , ; ' ~ , .  ----B.E 

\ \  

0 - ~ --Z'C 
L i L I 

0 0.2 0.4 0,6 0.B 1.0 
t 

Fig. 5. Equations (44) and (45) for bo=0.1, %=0.1. 

80 

60 

x 
_~ 40 LL 

20 

, \ / 
/ 

/ 
I / 

r I 
r 

I I 
0.02 0.04 

bo = 1.0 
"r c =0.1 

. . . .  LHS~E 
-o---o-F p ME 
__._ BME 
-O---O DIA ME 

0 I 1 - - - - I  
0 0.06 0.08 0.10 

Fig. 6. Equations (44) and (45) for bo = 1.0, ~c=0.1. 
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where 

cq - ~(y) (46a) 

e2 - ~E(z/rc)-Y] (46b) 

e -(c~I/2 - ~21/2)/(eI/2 + ~/2) (46c) 

Equation (45c) has been obtained by turning the convolution integral with 
respect to v" in (35c) into the inverse Fourier transform of the product of 
two Fourier-transformed Green's functions, then closing the inversion con- 
tour around a finite branch cut in the upper half plane. The x integration 
can then be handled by using the identity 

f ~ l d x ( 1 - x 2 ) - l / 2 f ( x ) = 2 f ~ d z [ f ( z 2 - 1 ) + f ( l - z 2 ) ]  (47) 

for any function f ( x )  bounded on ( - l ,  1). 
In none of Figs. 4-6 is there close agreement between the left-hand side 

(44) and any of the right-hand sides (45a)-(45c). This is in agreement with 
the Kubo number criterion with the Kubo number given by (32), which is 
oo in the case of the ME process, irrespective of the values of bo, ~o, or Av. 

5.3.  S h o r t - T i m e  R e s u l t s  

Maasjost and ElsS.sser found that [-when integrated with respect to v 
over (v' - Av, v' + Av) and differentiated with respect to r] the approximate 
solution valid for ~ ~ vc when extrapolated into the middle and long-time 
regimes gave "excellent agreement with the numerical results in the middle 
and final stages of the interaction." Since the long-time regime for ME 
statistics is, strictly, inaccessible to our analysis, we cannot check this 
claim. However, for the cases studied here, embodied in Eqs. (40) and (44), 
we find that the long-time behavior is not correctly given by the short-time 
results extrapolated to long times. The long-time asymptotic behaviors are 

1/2 3v 2 

2g~/2 

~ T--3/2 [ T>~(AU~2Tc (48)  

for Gaussian statistics, and 

1 Av v- 1 In +O(1) ~z-3/Zln(z) 
23/27r 1 \L- j 

(49) 
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for ME statistics, The short-time results extrapolated to long times in the 
time asymptotic limit ~ >> Av/bo are 

for Gaussian statistics, and 

( 2 ) ( A v ' ] [ l n ( ~ v ) + O ( 1 ) ] ~ T  2 In(z) 
~r/\bor/k 

(51) 

for ME statistics, Thus, there is a disagreement between (48) and (50) and 
between (49) and (51), the latter in each pair having an extra factor of 
T -1/2. Figures 7 and 8 show the extrapolated short time and the exact 
solutions both for Gaussian and ME statistics. In Fig. 7, corresponding to 
Fig. 6 of ME, the short-time solution follows the exact solution for ME 
statistics. In Fig. 8 we have reduced Tc by a factor of 10. This increases the 
evolution time scale and hence changes the characteristic value of ~/Tc, thus 
separating the short-time and exact solutions. Thus, we find no systematic 
agreement between the exact solutions and the short-time solutions 
extrapolated to long times. 

~  !1 ' ' ' ' 

ii1  r c =0.1 

o.4~[ , . __LHS G 

~ \ ~ ..... ,Hs.~ "~ STuE - 

O. [ "~ 

0 I 2 3 4 5 
t 

Fig. 7. Equations (40) and (44) and their short-time asymptotic forms denoted, respectively, 
by ST o and STME for bo = 3.5 x 10-2 and zc = 1/9. 
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Fig. 8. 

0.150 i I = I i 

bo :0.035 
O.lO0,~-I ! !\ "r c =O.OI 

/ i  i;~ 
I I ! / \  -- LHSG 

• t ~', ~ ~ \ -o---o-STG 
~. 0.075~JI \. ~ / \ . . . . .  LHS.E _ 
" Ii) ' \~l/ ~ -- :STME 

0 . 0 5 0 ~  

0.025 

0 o 5 IO 15 20 
t 

Equations (40) and (44) and their short-time asymptotic forms for b0 = 3.5 x 10 2, 
r c = 1/90. 

6. C O N C L U S I O N S  

We have studied in analytically tractable cases the acceleration of a 
particle in a stochastic acceleration field given in one case by an 
Ornstein-Uhlenbeck process and in the other by a process used by ME in 
their numerical experiments. Following ME, the results were used to test 
the accuracy of the Fokker-Planck,  the Bourret, and the direct-interaction 
approximation, as well as statements made on this subject by ME. For  the 
Gaussian process, the effective Kubo  number is finite and may be taken to 
be K =  boTc/Av. For  small K, all three closures agree with each other and 
with the analytical solution. For  _~> 1, none of the three closures show 
good quantitative agreement with the left-hand side although the DIA does 
far better than the other two. The DIA is the only one for which the right- 
hand side is qualitatively correct, contrary to the conclusion of ME. For  
the ME process, K =  oo and all three closures fail. This is in agreement with 
the fact that in the derivation of all three closures, the acceleration is 
assumed to be near-Gaussian, which is not the case for the ME process, a 
point which was not stressed by ME. Finally, we found no systematic 
agreement between the exact solutions and the short-time solutions 
extrapolated to long times for either process. We note that for none of the 
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sets of parameter values displayed does the DIA agree well quantitatively 
over the whole time domain if the other two closures disagree somewhere. 
Clearly, qualitative agreement of the expressions used in this test does not 
necessarily imply qualitative agreement of the solutions of the closure 
equations, nor does the reverse implication necessarily hold. As a referee 
has stressed, closures such as the DIA, which are realizable in the sense of 
possessing an underlying stochastic model, ~13'14) have certain self-regulatory 
properties which may make the fully self-consistent solution of the closure 
better-behaved than the test used here might indicate. Thus, from the 
present test we cannot definitively conclude whether or not the DIA is 
useful in connection with the stochastic acceleration problem, although we 
have shown that it does behave differently from the other two closures and 
that the reasons given by ME for rejecting it are unjustified. We should 
also emphasize that the choices of one dimension, v' = 2.0, 3v ~ v', and the 
analysis based on the spatially independent acceleration were made 
specifically in order to cover the parameter ranges studied by ME. (See 
Appendix A for the generalization to spatially varying fields.) For 
parameter ranges not covered by Appendix A, provided trapping is unim- 
portant, it is possible that the differences between the Fokker-Planck and 
Bourret approximations, on the one hand, and the DIA, on the other, 
become even more marked than for the examples studied in this paper. 
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APPENDIX A. EXTENSION OF THE RESULTS OF 
SECTION 2 TO SPATIALLY DEPENDENT 
GAUSSIAN FORCE FIELDS 

The integration of eqs. (8) gives explicit integral equations which can 
be iterated to yield expansions of x and v as functional power series in b. 
The result for v 0 up to second order is 

Vo~V-  d t ' b [ x - v ( t - t ' ) ]  

- fo dt' f t d t " ( t " - t ' ) b [ x - v ( t - t " ) ,  t " ] ~ x b [ X - V ( t - t ' ) ,  t'] (A.1) 
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Upon keeping terms in (A.1) up to first order in b, inserting the result into 
(9), and using the Fourier representation of the 6 function, we obtain 

P(v, t; v ) ~ f oo ~ exp[tk(v - v')] 

For  the Gaussian field with 

d t ' b [ x - v ( t - t ' ) , t ' ) ] } )  

(A.2) 

(b(x,  t)} = 0  (A.3a) 

and 

C(Xl, tl;  x2, t2) -- (b(Xl,  t l)b(x2, t2)} 

= b 2 e x p ( - [ x l - x 2 [ / l c - [ t l - t 2 [ / % )  (A.3b) 

eq. (A.2) gives the same result as for the lc = oo case with the replacement 
~c ~ r,c, where 

,,c - ( 1 + ~ )  1 (A.4) 

is the effective autocorrelation time for (A.2). The statements of Section 2.2 
carry over exactly as given there except that eq. (13) is replaced by 

f)(rl) = b(v%ctl, %ctl)/b o (A.5) 

To estimate the range of validity of the results of Section 5 with % replaced 
by %c, we need to consider two sources of error. The first is the neglect of 
terms of second and higher order with respect to b. The second is that, 
since %c depends on v, the integration of the expressions resulting from 
(A.2) with respect to v' can no longer be carried out exactly. To estimate 
the effect of the second-order term in (A.1), we can note that this term, 
when retained in the calculation of the drag coefficient, causes the 
v-dependent diffusion coefficient to appear between, rather than inside, the 
v derivatives. (1"6) Consider the addition to the diffusion equation of a small 
drag term with coefficient 5: 

8gl 8:? 6 L 
8t = D-~vZvZ gx + 8v g 1 (A.6) 

The solution to this equation which initially satisfies 

g~(v,  O; v ' )  = a (v  - v ' )  
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is 

gl(v, t; v') = (4gDt) 1/2 exp(-- (v - v '+  6t)Z/4Dt) (A.7) 

In order to neglect 3, we thus require 

Iv - v'l 6/D ~ 1 (A.8) 

and 
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(~2t/D ,~ 1 (A.9) 

For the purposes of estimation, we take 

where 

D=bZf~c  

and 

1 v ~ 1 "-- 
iac lc rc 

0D 
c3v' 

Upon inserting this into (1.8) and (A.9), respectively, we obtain 

and 

Iv-v ' l r '~C~l  or v ' + I c ~ > l v - v ' [  (A.10) 
lc zc 

3 
"~ a c  t 

- - ~ 1  (A.11) 

Now we can associate with (A.6) a Langevin-type equation of the form 

(dv/dt) + (~v = F(t)  (A.12) 

where F(t)  is a random force satisfying 

;o D = d t ( F ( t )  F(O))  (1.13) 

Physically, the conditions (A.11) then represent the necessary and sufficient 
criteria for the drag, which causes a displacement of the entire velocity 
profile, to be negligible. 
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ARernatively, we can express the criteria (A.10) and (A.1 l) in terms of 
the characteristic times for a particle with initial velocity v' to leave the 
interval ( v ' - A v ,  v'+ Av), where Av - Iv-v '] ,  due to drag and diffusion, 
respectively : 

Av 
% - ~ (A.14a) 

(Av) 2 
r D "= (A. 14b) 

D 

Equations (A.10) and (A.11) then become 

~D~ 1 (A.15a) 

(a t )  2 
- - ~ 1  (a.15b) 

Dt 

The first of these says that the particle must leave more quickly by diffusion 
than by drag, while the second says that the velocity change due to drag 
must be smaller than that due to diffusion. 

A direct mathematical estimate of the criterion for the validity of (A.2) 
can be made by rewriting (A.1) in the form 

{, 1 ( ,  

- i k v  o = - i k v  + J d~, A(~I) b (~)  - ~  j d~ 1 dr B(~I, ~2) b(~,) b(~2) (A.16) 

where 

~i • (xi, ti) (A.17a) 

A(~i) - ikz(o,,)(ti) 6 { x i -  [x - v(t - ti) ] } (A.17b) 

B(r r - -2ikz(o,,)(t~) Z(,1,o(t2)(t~ - t2) 

x 6 { x 1 - [ x - v ( t - t ~ ) ] } 6 { X z - [ X - V ( t - t 2 ) ] }  (a.17c) 

Upon performing the ensemble average, but now keeping terms up to 
second order, we have formally 

(exp( - ikvo) ) ~ exp( - ikv)[det( 1 + CB)] -1/2 

x e x P { 2 f d ~ l d ~ 2 A ( ~ l ) A ( ~ 2 ) , C  '+B)-1 ,~1,  ~2))A.18) 

where 

and ( b ( ~ ) ) = 0  has been assumed. 
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We wish to estimate the effect of B. Consider an integral of the form 

I - fdk lexp ( i k~b-~k f lb2 ) )exp( i kAv)  

= f + oxp ( -  
k2b~ 2 

2re \ 2(1 + kfib~),l e x p ( -  ik Av) J 

- (2zc)mboc~ 1 + O \-~-~-//+ O \ - -~ - / / j  

( ~3v  [, +o (7)])  • 
exp k 2 bo2c~ 2 (A.19) 

where c~ and /7 are small quantities and /7 > 0. We see from (A.19) that/7 
can be neglected if and only if all of the following hold 

~ Av 
~---7-~ 1 (A.20a) 

~2 ~ 1 (A.20b) 

b2~4 < 1 (A.20c) 

By comparing (A.18) and (A.19), we see that necessary conditions for the 
neglect of B in (A.18) can be obtained from the results (A.20) by setting 

A CB CA 
flb~-~ k A C ~ -  O[k ~ Tr(CB)] 

2 2 = O(bo%,,t/lc) (t >> %c) 

= o(b~ t3/1c) (t ~ ~ac) 

~2b~-+k 2tr(ACA)=O(bZzact) (t>>%,) 

=o(b~ot 2) ( t ~ a c )  

(A.21a) 

(a.21b) 

Upon making these insertions, (A.20a) and (A.20b) result, respectively, in 
(A.10) and (A.11), while (A.20c) gives 

(Av)3/b~lct~l or t>>to- (Av)3/b~lc (A.22) 

Equation (A.22) is not obtained by the analysis proceeding from (A.6) 
since it corresponds to the effect of terms containing derivatives with 
respect to v higher than second. 
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Assessing the numerical values of these criteria for Figs. 1-3, we find 
that (A.10) and (A.11) are well-satisfied even for lc=O. If we take ra~ =0.1 
for Figs. 1-3 and lc=w:c, we obtain to= 10 3, 10-5, and l0 7 for 
Figs. 1-3, respectively. 

If we could show that the terms of higher order in /~ in (A.19) are 
negligible when the appropriate operator replacements are made (for 
example, if tr [A C(BC)nA ] = O { tr(A CA) [tr(BC) ] n } ), then the conditions 
(A.8), (A.9), and (A.22) would also be sufficient. This seems plausible, 
although we have been unable to prove it. 

The second source of error, namely the v dependence of ~ac., causes an 
error in the results of Section 5 for the Fokker-Planck and Bourret 
approximations, which is small provided (A.8) holds. In the case of the 
DIA expression (41c), it is necessary that the spatial length scale of G be 
much smaller than l c. This gives the necessary condition 

l ~ ( h l~cl/2 ~ 2/3 (A.23) 
kbo~ae / 

For zc= o% this condition gives t <  16, 3.4, and 0.74, respectively, for 
Figs. 1-3, which is more stringent than (A.9). 

An analysis of the type presented in this appendix is expected to hold 
even for time-independent acceleration fields provided that particle trap- 
ping and large deflections--for example, from single peaks of a potential 
acceleration field--are unimportant. This is not the case for the one-dimen- 
sional time-independent problem. 

A P P E N D I X  B. S O M E  P R O P E R T I E S  OF T H E  M A A S J O S T  
A N D  ELSASSER FIELD 

First we derive the characteristic functional (27). By definition, we 
have 

G[kJ-  (expl- i fdxdtk(x, t )bx(x)b~(t) l)  

Since bx and b, are both Gaussian processes, we can write formally 

(B.1) 

G[k] = [det(2~ax) det(2~za,)] 1/2 f d[bx] d[b~] 

1 1 1 ) 
• exp - ~ b x ' ~ ;  "bx-~bz'a; -~'bt-ibx'k'bt 
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where 

b~" f - f d~b~(o~) f(~z) 
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(~ = x or l) 

(B.7a) 

(B.7b) 

1) x(rl ) "2- ~7 x lbx(v ,r  c~ ) 

b t (~)  ~ 17ylbt(7~c?]) 

From (25) it follows that 

<bx(~] 1) bx(/~2) > = e x p ( -  Ir/~ - ~12l/Tx) 

</~/(r/,) 5,(r/2) > = e x p ( -  I~/~ - ~/21/T,) 

where 

and 

~a(Cq, C~2) -- <b~(C~l) b~(~2)> (B.2) 

Upon performing the functional integration over [b,], we find 

; [1 1 G[k]=[det(2~ax)] -1/2 d[bx]eXp - ~ b x ' ( a 2 1 + k ' a , ' k r ) ' b x  (B.3) 

where 

kr(t, x) "- k(x, t) 

Then, upon performing the integration over [bx] we obtain 

G[k] = [det(/~ + ax" k. a," kr) ]  1/2 (B.4) 

which, with the matrix products written out explicitly and the correlation 
functions from (25) inserted, gives (27). 

It is possible to make some observations regarding (A.2) for this 
acceleration field, although the justification given in Appendix A of it as an 
approximation to D(v, ~; v') is no longer valid. The term in the ensemble 
average brackets in (A.2) is just G[k] for the test function 

k(x, t)= iA(x, t) (B.5) 

where A(x, t) is given by (A.17b). It can again be written as the solution of 
the stochastic oscillator problem as in Section 2 and with (A.5) written 
explicitly as 

/~(r/) = 6~(r/) 6,(~/) (B.6) 
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where 

Tx - lj(v%<.), T, - %/%c 

The stochastic oscillator solution is formally 

RK(v ) = [de t ( I+  K2(~x(~,)] 1/2 (B.8) 

where 

C~(t/I, q2) - Z(o,,/~o<)(r/1)(/7~<(r/1)/7~(r#2)) 
(B.8) can be substituted into (17) to give the (still formal) solution. It is 
difficult to make much further progress except in the case 

t /% c ~ T~ or T, (B.9) 

in which limit (28) and (29) are valid. A series expansion of (B.8) in K is of 
no use since large values of K contribute in (17). If 

T x = T, = 2 (B.10) 

then it is possible to obtain the eigenvalue condition which gives the eigen- 
values whose product makes up (B.8). The result is 

RK('~) = H (1 -t- K2X#) ni/2 (B.11) 
i 

where ni is the degeneracy of the ith eigenvalue, 2i -" [4/(cd + 1)] 2, and ~i 
satisfies c~=tan(c~-c/4) or e=cot(c~r/4). Even though the eigenvalues can 
each be computed with arbitrary precision, we have only been able to use 
them to cary out an asymptotic evaluation of (17) in the short-time limit 
which, given (B.10), is equivalent to the case (B.9), and which can easily be 
obtained without recourse to the above scheme or any closure 
approximations. (See, for example, ME.) 

An argument similar to that leading to (A.20) for the Gaussian field 
can be applied. Consider an integral of the form 

f 
oo dk 

co ~ exp(ik A v ) ( 2 ~ a x a , ) - *  

xf exp 
2~ 2 2~2J 

-  <bot kT/;oJ+g t, T - J L  k- o) x '  - Xo + 
(/7->0) (B.12) 

822/44/5-6-13 
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Terms involving nonzero powers of /~ can be neglected if and only if 
(A.20a) holds. Evaluating P as given by (A.2) but for the ME field, keeping 
the second-order term in b, and expanding to first order in that term, we 
find that provided one eigenvalue of ax' A" at' A dominates over the others 
[which is true, for example, if (B.9) holds], then we can make the 
replacements (A.21), which yield (A.10). Again, if the higher terms in the 
operator expansions corresponding to an expansion in /~ are also well- 
behaved, then (A.10) and (B.9) are necessary and sufficient conditions for 
the results of Section 3 for ME statistics to be extended to the finite lc case 
by applying (A.4). 
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